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Parallel flows with step function velocity and density profiles can support waves 
which have negative energy, in the sense that exciting them lowers the total energy of 
the system. A number of instabilities can occur because of the coexistence of positive 
and negative energy waves, or because of the damping of negative energy waves; some 
particular examples are discussed to show how appreciation of this role of negative 
energy waves allows one to predict the existence of instability before doing any 
detailed analysis, and to gain insight into the instability mechanism. 

1. Introduction 
The idea of negative energy waves is familiar in plasma physics and is of considerable 

value in the discussion of both linear and nonlinear instabilities of uniform media 
(Bekefi 1966; Briggs 1964; Coppi, Rosenbluth & Sudan 1969; Davidson 1972). A wave 
has negative energy if its establishment in a previously unperturbed system requires 
that energy be extracted from rather than fed into the system, or, in other words, 
exciting the waves lowers the total energy of the system. One of the features of a 
uniform plasma, which makes this concept very useful, is that the dispersion relation 
for plane electrostatic waves is 

where E is the linear dielectric constant of the plasma, while the wave energy in the 
above sense is 

s ( w , k )  = 0, 

as 
w - x the electric field energy 

aw 

(Stix 1962). Thus, the wave energy can be found immediately from a linear analysis 
and used to predict the stability properties of the system. 

Negative energy waves have been discussed occasionally in work on fluid mechanics 
(Landahl 1962; Benjamin 1963; Acheson 1976), but their role in predicting and 
elucidating the mechanism of certain types of instability has not been fully exploited. 
In this paper we shall consider inviscid parallel flows with step function velocity and 
density profiles, and show that methods similar to those familiar in the literature of 
plasma physics may be used to analyse and predict their behaviour. 

In $2 we derive an expression for the energy of a wave on the system described 
above, the method being to consider the work done during an idealized process in 
which the wave is driven up by an external force applied on a surface in the fluid. 
0022-1 120/79/4248-6420 $02.00 @ 1979 Cambridge University Press 

I F L M  92 



2 R. A .  Cairns 

This is essentially the procedure used in plasma physics and also by Landahl (1962). 
It is shown that a well-defined dispersion function D(w, k) may be obtained, with the 
properties that the dispersion relation for waves is 

D(w, k) = 0, 

$(o aD/aw) x (wave amplitude)2, 

so that D plays a role analogous to that of the dielectric constant in the theory of 
plasma waves. The function D, and hence the energy of a given mode, depends on the 
frame of reference from which the system is observed, and the energy can always be 
made negative by transforming to a suitable moving frame of reference. However, 
physically significant effects occur if both positive and negative energy modes exist 
in a given frame. Many linear instabilities occur through the coalescence of a positive 
and a negative energy mode to form a single unstable mode, such instabilities being 
known in plasma physics as reactive instabilities, or, in the classification of Benjamin 
(1963), as class C instabilities. In 9 3 we discuss the Kelvin-Helmholtz instability and 
confirm that it is of this type, while in § 5 we consider a system with three fluid layers 
and show that such instabilities can occur when a positive energy wave propagates on 
one interface and a negative energy wave on the other. This example illustrates one 
of the useful features of this type of analysis, whereby the properties of a multi-layer 
system can be predicted by looking at  each interface separately. If the interfaces are 
sufficiently far apart, waves on them are essentially independent, except when two of 
them happen to have the same frequency and wavenumber. Instability then occurs 
if the wave energies have opposite sign. In  the three-layer system it will be shown 
that a density discontinuity a t  the lower interface introduces a wave mode which can 
interact with a negative energy wave on the upper interface and give rise to in- 
stability for flow velocities of the upper fluid below the critical velocity for Kelvin- 
Helmholtz instability. Similar instabilities were found by Taylor (1931). The method 
of this section can be extended to a system with an arbitrary number of interfaces, 
the technique being to plot the dispersion curve for waves on each interface separately, 
then to look for frequencies and wavenumbers through which two such curves pass. 
Instability occurs if the waves involved have energies of opposite sign. In this way the 
complex wave propagation and instability properties of such a system can be simplified 
and elucidated. 

Another type of instability, class A in Benjamin’s classification, occurs when in 
some frame of reference a wave has negative energy and there exists a dissipative 
process which extracts energy from the wave. If the dissipation is weak enough to 
leave the wave properties essentially unchanged, the extraction of energy from a 
negative energy wave leads to its growth and hence to instability. A simple example 
is discussed in 5 4, where we consider an inviscid fluid flowing over a heavier, slightly 
viscous fluid at rest. The effect of the viscosity is clearly to extract energy from this 
system and, as would be expected, it produces instability if the flow velocity of the 
upper fluid is such as to give rise to a negative energy mode on the interface. As has 
already been pointed out by Weissman (1970) this produces an instability for flow 
velocities below the critical velocity for Kelvin-Helmholtz instability so that viscosity 
has a destabilizing effect. Essentially the same effect has been discussed by Landahl 

and the wave energy is 
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(1962)) the dissipation in this case being provided by damping in a flexible wall. Both 
Landahl and Weissman recognized that the physical mechanism for instability lies 
in the fact that the wave on the interface has negative energy. The present work 
yields a simple method of identifying such negative energy modes which, coupled 
with an awareness of their role, allows the prediction of such instabilities in advance 
of any detailed analysis of the dissipative system. 

Finally, in $6 ,  we consider the weakly nonlinear theory of resonant wave inter- 
actions and discuss the conditions under which a nonlinear instability, of the type 
known in plasma physics as an explosive instability, can occur. This instability 
involves a resonant interaction amongst three waves, one with different sign of 
energy from the others, and leads t o  the simultaneous growth of all three. The 
necessary conditions are shown to be satisfied by some three-layer systems. 

Some of the properties of negative energy waves which we discuss are implicit in the 
work of Landahl (1962), Benjamin (1963) and others. The points which we wish to 
emphasize here are the ease with which such waves can be identified in the class of 
flows considered, and the way in which such identification reveals sources of instability. 
The specific systems analysed are chosen to illustrate these ideas, rather than for their 
intrinsic importance. 

2. Energy of waves on parallel flows 
Consider an incompressible inviscid fluid whose velocity is in the x direction and 

may, along with the densihy, be a step-function of z. The fluid may be bounded, 
semi-infinite or infinite in the z direction. We shall look at waves propagating in the 
x direction though a y component of wavenumber could be introduced without adding 
any essential difficulty. Consider now a surface z = zo in the unperturbed fluid and 
suppose that when the wave is set up it is displaced to  

where 
z = 20 + r(x, t ) ,  

~ ( x ,  t )  = A exp (ikx - iwt).  
Linearization of the equations describing the fluid and substitution of perturbations 

going as exp (ikx - iwt)  will give the dispersion relation for the fluid. The value of A 
in (1) then fixes the amplitude of the waves. 

Suppose that in the linearized theory the equations are solved for z > zo + 7 and 
that when the appropriate boundary conditions a t  the upper limit of z are imposed 
the pressure at  z = zo + 7 is found to first order in the amplitude. This will be propor- 
tional to A and of the form 

p,(x,  t )  = D,(w, k) A exp (ikx - id ) .  
A similar treatment of bhe region z < zo + 7 will give the pressure a t  zo + y in the form 

p2(x, t )  = D,(w, k) A exp (ikx - iot). 

The perturbation has been assumed to  be the same in both regions, so that the con- 
tinuity condition across the surface is satisfied automatically. The other condition to 
be satisfied is that pressure is continuous, which gives 

or (2) 
1-2 
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Equation (2) is the dispersion relation describing the properties of waves in the linear 
approximation. In  view of the fact that we shall later take the surface z = zo to 
correspond to the boundary between two fluids, we shall require that the surface 
tension force is included in either D, or D,, that is we equate pressures either just 
below or just above the interface between the fluids. This will avoid the introduction 
of a separate surface tension term in the equations. 

Now suppose that for some wavenumber k, there exists a solution w, of (2), where 
w, is taken to be real. (The definition of wave energy for waves which are not marginally 
stable or close to marginal stability presents problems.) To calculate the energy of 
this wave we suppose that i t  is driven up by imposing a suitable external driving 
force on the surface z = zo + y and calculate the work done on the fluid. The surface 
perturbation will be taken to be 

y(x,t) = A(t)exp(ik,x-hot),  

where A --f 0 as t + - co and A +A, as t -+ co. Assuming the time variation of A to be 
slow compared to that of the exponential the pressures a t  the surface will be 

p , ( z ,  t )  z D,(w, i- i a/at ,  k,) A(t )  exp (ik, x - io, t )  

and p J x ,  t) z D,(w, + i a/at, k,) A(t) exp (ik, x - iw ,  t) ,  

where the partial derivative a/at only acts on the slowly varying amplitude. The rate 
a t  which work is done per unit area in the x, y plane by the external driving force is 

-?w -PA " iwoY'P1 -PA* (3) 

In  (3) we neglect the  contribution to rj due to the rate of change of amplitude, since it 
is small compared to - iw, 7. Also we note that p ,  -p ,  is not zero, since the oscillation 
with time dependent amplitude is not a normal mode of the system. The pressure 
difference across the surface when the oscillation is being driven with increasing 
amplitude is precisely the reason why work must be done on the system to establish 
the wave. 

If we use the approximation 

Dl, 2(wo + ia/% k,) = ira~l , , (w, ,  k,)/aw,l a p t ,  
then we have 

.aD dA 
aw, dt p,-p, z ~--exp(ik,x-io~,t). 

Substituting this in (3) and averaging over the fast-time scale of the oscillations we 
obtain the rate at  which work is done as 

and so that total work done in setting up the wave is 

aD w = *w - \A,(? 
O aw, (4) 

Thus, we have a simple expression for the wave energy, in terms of a well-defined 
form of the linear dispersion relation, which is analogous to the well-known expression 
for the energy of plasma waves discussed in 9 1.  
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Our derivation of wave energy in this section is an adaptation of the method of 
Coppi et al. (1969) for plasma waves. A similar expression was obtained by Landahl 
(1962) in a discussion offlow over a flexible surface. I n  the following sections we shall 
see that negative energy waves play a role in linear and nonlinear instabilities other 
than those associated with a flexible wall. 

3. Kelvin-Helmholtz instability 
Consider a system whose unperturbed state consists of fluid (incompressible and 

inviscid) of density p1 in the region z > 0, moving with uniform velocity U in the 
x direction. In  the region z < 0 there is fluid of density pz > p1 at rest, while gravity 
g acts in the negative z direction. If the displacement of the surface is 

Y ( X ,  t )  = A cos (kx - wt) ,  

then the velocity potentials are, in the upper region, 

= ( ( w - k U ) / k ) A e - k z s i n ( k x - w t )  

and, in the lower region, 
q5z = ( w / k )  Aekzsin ( k x - w t ) .  

The use of real quantities instead of complex exponentials perhaps makes the 

If the surface tension is y ,  then the pressure difference across the surface z = 7 
averaging processes slightly clearer, but makes no essential difference to the theory. 

(including the effect of surface tension discussed above) is 

Thus the function D(w, k )  of $ 2  is given by 

and the energy per unit area in a stable wave is 

We can verify this fact by making a direct calculation of the difference between the 
energy of the system when the wave is present and that of the unperturbed system. 
The contribution due to kinetic energy is (per unit area in the x, y plane) 

2dA2 cos2 (Icx - w t )  e2kzdz + ([ U + (w  - ku) Ae-kz 
4 P 2 / A  cOS ( k r - 4  

-03 A c06 kx-wt  

x cos (kx - o ~ t ) ] ~  + (w - k ~ ) ~  A2 e-2kz cos2 (kx - w t )  - UZ} dz, 

which is, to second order in A and averaged over the oscillations, 

0 2  l p  $p2% A2f-A [ (w - kU)2 + 2kU(w - k U ) ]  A2. 
4 k  
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Consider now the gravitational potential energy. I n  the upper region the displace- 

(7) 

II: = xo+ Ut+Ae-kzsin(kx-ot), (8) 

ment of a fluid element in the z direction is 

A cos (kx - wt)  e-kz, 

while its position along the x axis is 

where xo is a constant. Substituting (8) in ( 7 ) )  expanding to second order in A and 
averaging gives the average displacement as - #A2 e-2kz. Multiplying by p1 g and 
integrating over z gives the change in potential energy of the upper fluid due to the 
wave as - t p l  gA2. Taking the lower fluid into account in the same way we obtain for 
the gravitational potential energy per unit area 

M P 2  - P1) A2. (9) 

(10) 

Finally the contribution due to surface tension is 

L kZA2 4Y 

and the total wave energy per unit area is the sum of ( 6 ) ,  (9) and (10). 

by ( 5 ) )  we obtain the energy in the form 
Using the fact that waves satisfy the dispersion relation D(w, k) = 0, with D given 

$ ~ 2 , A ' + - - [ ( ~ - k U ) ~ + k U ( w - - k U ) ] A Z  W 2  1P1 = w 
2k: 

This is easily verified to be equal to &wA2 aD/aw as predicted by the general theory of 
the last section. It can be seen that the only term which can give rise to  negative 
energy is the second one within the square brackets in equation ( 6 ) )  which is only non- 
zero if U is non-zero. It arises because oscillations in flow velocity are in phase with 
oscillations in depth and will be negative if the depth of fluid is a maximum when 
the flow velocity is a minimum. Equipartition of kinetic and potential energy only 
occurs if li = 0. 

Solving the dispersion relation gives 

where c; = (-) Pz-P1 g I kY 
P2+P1 k P'+P1' 

and if (12) is substituted into (1 1 )  we obtain, for the wave energy, 

the sign corresponding to that taken in (12). From (14) we see that the energy is 
negative if the frequency of the mode corresponding to the negative sign in (12) 
becomes positive (or vice versa if U < 0). I n  figure I the dispersion diagram for this 
system is shown, for the case where U is large enough to excite the Kelvin-Helmholtz 
instability. The mode labelled 2 is of negative energy in the region where its frequency 
is positive, the reason being that the total kinetic energy of the system is less than that 
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FIGURE 1. Dispersion curves for Kelvin-Helmholtz instability. - --, unstable (w complex). 

of the unperturbed system. The unstable region is produced by a coalescence of 
positive and negative energy modes, a feature characteristic of a large class of in- 
stabilities [reactive instabilities in the terminology of plasma physics (Bekefi 1966)]. 
Note that there may be a negative energy wave even if U is less than the critical 
velocity for Kelvin-Helmholtz instability. 

A change in the frame of reference may change the sign of the energy in a given 
mode, but the unstable branch always occurs as above, except in the special case in 
which the modes coalesce at  frequency zero. In this case the energy of each mode 
tends to zero at  the point of coalescence. In  a later section we shall illustrate how 
instabilities of this kind can be predicted in more complex systems by looking for 
points in the dispersion diagram where positive and negative energy modes meet. 

4. The effect of viscosity 
Suppose that in some frame of reference a negative energy wave exists and that 

some dissipation is introduced, small enough not to effect any large change in the 
wave propa,gation properties. If energy is lost by the negative energy wave then it 
grows in amplitude and is unstable. We illustrate this effect by assuming that in the 
system of the previous section the lower fluid has kinematic viscosity v, while the 
upper fluid remains inviscid. Since the lower fluid is at  rest in the unperturbed state 
the effect of viscosity in it must be to extract energy from the system so that we might 
expect a negative energy mode as described above to become unstable. This may 
happen at flow velocities of the upper fluid below the critical velocity for Kelvin- 
Helmholtz instability. 
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The problem of surface waves on a viscous fluid has been considered by Lamb 
(1906) (see also Miles 1959). Using his result and taking into account the effect of the 
upper fluid we obtain the dispersion relation 

- ( ~ 2 - ~ ~ ) g - k ~ y + k - ‘ ( w - k U ) ~ p , + p 2 k - l ( ~ ~ + 4 i v o k ~ )  = 0 

or D(w, k) = - 4ip2 vwk. (15) 
Since we are only interested in the case where the viscous correction to the dispersion 
relation is small we have neglected terms of higher order in v which appear in Lamb’s 
expression. It is easily verified that if these terms are of the same order as that which 
we include then the term on the right-hand side of (15) is of the same order as the 
inertial terms on the left-hand side. 

If wo is a root of 
D ( w , k )  = 0, 

then for small v we may take 

where So is a small correction. Then we have 

w = wo+60, 

SW aD/awo z - 4ip2 vw0 k 

or 

Instability will occur if the imaginary part of 6w is positive, which can be seen; from 
( l6 ) ,  t’o occur if wo aD/aw0 < 0,  that is the wave in question has negative energy. 

This substantiates our claim that a negative energy wave may be driven unstable 
by the effect of viscosity, an effect similar to the class A instability of Benjamin 
(1963). For the system considered here it is easy to see that the negative energy wave 
can occur and be unstable for flow velocities below the critical velocity for the Kelvin- 
Helmholtz instability. Miles (1959) did not find this because of his assumption that, 
for Kelvin-Helmholtz instability, the pressure of the upper fluid was always in phase 
with the displacement, a result which is only true, for the system we are considering, 
if w is real. If both fluids were viscous more care would have to be exercised. Quite 
apart from the fact that the unperturbed flow would be different, a wave with negative 
energy in the rest frame of the lower fluid could have positive energy in the rest 
frame of the upper fluid and be damped by it. Even if our analysis were relevant to 
real fluids, it should be noted that the growth rates below the critical velocity for 
Kelvin-Helmholtz instability would be very small in systems where our analysis is 
valid, so that our results are not necessarily in conflict with the experimental results of 
Francis (1956). The main purpose of our example is to illustrate the fact that it is 
possible to predict the consequence of small dissipative effects for a wave if the 
sign of its energy is known. 

The effect of viscosity in producing instability at  lower flow velocities than are 
required for Kelvin-Helmholtz instabilities has been considered by Weissman (1  970), 
and the similar problem of destabilization due to a flexible damped wall by Landahl 
(1962). The main point of our discussion is not the originality of the result, but the 
fact that it is an obvious consequence of the fact tha.t one of the waves on the interface 
is of negative energy. The negative energy wave is just that one whose direction of 
propagation is reversed by the effect of the flow of the upper fluid. 
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r = O  Surface tension y, 

P l  

z = -d Surface tension y2 

P3 

FIGURE 2 .  The unperturbed system with three fluid layers. 

5. Stability of a three-layer system 
We now consider the stability of a system as shown in figure 2. The lower two layers 

have been assumed to  have no relative motion, though such motion could be intro- 
duced at  the expense of a slight complication in the algebra. The velocity potentials 
in the three regions are of the form 

1 = C, exp ( - kz) exp ( ikx  - iwt ) ,  
$, = [C, exp ( - kz )  + C3 exp (kz ) ]  exp ( ikx  - iw t ) ,  

$3 = C4 exp [k(z  + d ) ]  exp ( ikx  - id). 

If the surface displacements at z = 0 and z = - d are 

7, = A ,  exp ( ikx  - iw t )  and 7, = A ,  exp ( ikx  - iwt) 

respectively, then the kinematic boundary conditions lead to  the equations 

C, = i ( w - k U ) A , / k ,  C, = (-ioA,+iwA,e")/k(e2kd- i),  

C3 = ( - iwA,  + i d ,  e - k d ) / k (  1 - c 2 k d )  and C4 = - iwA, /k .  

The boundary conditions on the pressure then lead to the equations 

and 
D,(w, k) A ,  + p , ( d / k )  cosech ( k d )  A,  = 0 
D,(w, k) A ,  +pz(w2 /k )  cosech (kd )  A ,  = 0, 

and D,(w, k) = 0 is the dispersion relation for waves on the upper interface if the lower 
one is replaced by a rigid boundary. Similarly D,(w, k) = 0 is the dispersion relation 
for waves on the lower interface if the upper one is replaced by a rigid boundary, the 
form of D, being analogous tjo that of D,. Note that the functions Dl, , used here are not 
related to those of 3 2. 

Following our procedure of 5 2 we can consider the pressure difference across the 
surface z = 0 when all other boundary conditions are satisfied. This is, using the 
second equation of (19) to eliminate A,,  

D(w, k )  A ,  = - (D,(o, k) --pi w4 cosech, kd/k2D,(w, k)] A ,  
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and the wave energy is, as before, 
aD 
a o  aw- IA,(2. 

If desired the wave energy could, of course, be expressed in terms of the amplitude A ,  
or, indeed, of the amplitude at  an arbitrary value of z. 

The most interesting case for our present purposes occurs when cosech2(kd) < 1, 
in which case the waves on the two interfaces are only weakly coupled. Then, from 
the dispersion relation for waves on the complete system, i.e. 

D ( w , k )  = 0 

or D,(w, k )  D,(o, k )  - (p: w4/k2) cosech2 ( k d )  = 0 (20) 

it is evident that, so long as the roots of D, = 0 and D, = 0 are well apart, the wave 
frequencies are close to those of waves on the interfaces considered separately. Also, 
it can be verified that the wave energies are of the same sign as those of the corres- 
ponding waves on a single interface. 

Now let us consider what happens if, for some value of k, the roots of D,(w, k) = 0 
and of D,(w, k )  = 0 are close. I n  particular we suppose that 

D,(w,, k) = 0 and D,(w,, k) = 0, 

where w2 = w,+S and 6 is small. Now, suppose that the solution of the complete 
dispersion relation (20) is 

w = w , + A ,  

where A is also small. Then we have 

D,(o, + A, k)  D2(w,+ A - 6, k )  - (pi o4/k2) cosech2 ( k d )  = 0 

or, approximately, 
aD aD p2w4 
awl aw, k2 

AA(A-S)L-*cosech2(kd)  = 0. 

This is a quadratic equation for A of the form 

A2- AS-h' = 0, 

where K is positive if the energy of both waves is of the same sign, and negative if one 
is of positive and the ot,her of negative energy. From the solution of this it can be 
seen that in the lat'ter case A has complex roots, leading to  instability if 

This illustrates the fact that  it is possible to predict instabilities of a system of this 
sort simply by looking a t  the dispersion properties of waves on each interface taken 
separately. If dispersion curves for the individual interfaces cross as shown in figure 
3 ( n ) ,  then the behaviour of the complete system is as in figure 3 ( b )  if the wave energies 
are both positive or both negative, or as in figure 3 ( c )  if one is positive and one negative. 

This example illustrates a general principle which is of considerable value in the 
linear stability analysis of complex systems. If the system supports a number of 
different wave modes which only interact weakly with each other, then it may be 
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I > 
k 

- 
k 

FIGURE 3. Form of the dispersion curves when modes on the upper and lower interfaces coincide: 
(a) for the interfaces treated separately; ( b )  for the complete system when the sign of the energy 
of the two modes is the same; (c) for the complete system when there is one positive and one 
negative energy mode. ---, unstable. 

possible to investigate the stability by breaking the problem down into a number of 
simpler ones and looking for points in the dispersion diagram at which two modes 
intersect. For systems more complex than that considered here this idea may be very 
useful [for applications to plasma physics see Briggs (1964)l. To return to our particular 
example, i t  is of interest to note that if the density of the lowest fluid is close enough 
to, but not equal to, that of the middle fluid, then the system may be unstable for 
velocities of the upper fluid too low to excite the usual Kelvin-Helmholtz instability, 
though the growth rates will be small in systems for which our analysis is valid. 

Some problems very similar to that considered here have been treated by Taylor 
(1931), the main difference being that he considered a linear, rather than a piecewise 
constant, velocity profile. Since the velocity potentials of perturbations of such a 
flow are still of the same form as (17) ,  this makes very little difference to the analysis. 
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One conclusion of his work was that it was ‘curious that the effect of a stratification 
in density gives rise to unstable waves for certain velocities when the same waves in a 
homogeneous fluid would be stable ’. Like the instability discussed here, Taylor’s 
instabilities occur when the backward-moving wave at  the upper surface, which has 
negative energy, has the same frequency and wavenumber as a positive energy wave 
in the stratified fluid below this surface. 

6. Nonlinear theory 

frequencies and wavenumbers satisfy the conditions 
If three wave modes exist in a system and form a resonant triad, that is their 

~1 = ~ 2 + 0 3 ,  k, = k,+k3, (21) 

then, as is well known, their amplitudes obey a set of equations of the form 

a 4  - = C,A2A,, 
at 

-- aA2 - C, A, A: 
at and -- aA3 - C, A ,  A,*. 

at 

If the wave amplitudes are normalized so that the wave energy density is 

~ ~ s , I A f l ,  i = 1,2 ,3 ,  

where Si is f 1 and is chosen so that the sign of the energy is correct, then the co- 
efficients Ci obey, in a non-dissipative system, certain symmetry relations, from which 
follow various conservation relations, including energy conservation and the so-called 
Manley-Rowe relations 

These relations and other consequences of the nonlinear coupling equations are 
discussed in detail for plasmas by Davidson (1972), and have been shown to hold for 
any Lagrangian system by Dougherty ( 1  970). 

A particularly interesting consequence (Coppi et al. 1969; Davidson 1972) is the 
possibility of solutions in which all the wave amplitudes grow simultaneously and 
tend to infinity at  some finite time. For this to occur two conditions must be satisfied, 
namely that one of the waves has an energy which is different in sign from the other 
two and that this wave has the highest frequency in absolute value. Explosive 
instabilities of this type are well known in the theory of plasmas. In  view of the fact 
that systems of the type we have discussed in previous sections can be described by a 
Lagrangian (Simmons 1969), i t  follows that we may expect explosive instability to 
occur in them if resonant triads satisfying the appropriate conditions can be found. 
In a system with a single interface, as discussed in 3 3, stable positive and negative 
energy waves can occur for a range of velocities below the critical velocity for Kelvin- 
Helmholtz instability. However, it is easy to see from the dispersion relation that 
triads satisfying the conditions for explosive instability do not exist. If, however, we 
go to a system with three fluid layers, as discussed in 3 5, then such a triad can exist. 
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To see this, suppose that the velocity U is large enough to produce a negative energy 
wave of frequency w1 and wavenumber k, in the upper interface, but is below the 
critical velocity for Kelvin-Helmholtz instability. On the lower interface all modes 
have positive energy. Neglecting surface tension the dispersion relation for these 
modes is 

u = Ak*, (23) 

where A depends on the ratio of the densities of the two lower fluids. Frequencies and 
wavenumbers satisfying (23) and 

w 1 =  w2+w3, k, = k ,+k ,  

can be found if 2A2kl > > A%,. (24) 

Thus, given the properties of the upper interface, explosively unstable resonant triads 
will exist if A is small enough, that is if the density jump across the lower interface is 
sufficiently small. This analysis assumes that the interfaces are well apart, so the 
nonlinear coupling would be expected to be rather weak. Detailed analysis of the full 
dispersion relation of Q 5 would be required to see if the explosive instability persists 
when the middle fluid layer is thinner. Also, it  may be noted that if (24) is satisfied 
there exists a weak linear instability of the type discussed in Q 5 ,  though, in general, 
at a different wavenumber from the members of the explosively unstable triad. It 
is perhaps worth pointing out here that, although the sign of the energy of a particular 
wave may change when viewed from a different frame of reference, the conditions for 
existence of an explosive instability are satisfied in all frames of reference if they are 
satisfied in one (Davidson 1972). The mode which is of different energy sign and 
highest frequency may, however, be different in different frames of reference. 

The explosive instability discussed here is different in origin from the similar 
phenomenon discussed by Craik (1968). The system described in that work is dissipative 
and the coupling coefficients in the nonlinear equations do not, in consequence, obey 
the symmetry relations mentioned earlier. On a somewhat cautionary note it should 
be mentioned that, although explosive instabilities are well known in the theory of 
plasmas, only very recently has experimental evidence of their existence been obtained 
(Sugaya, Sugawa & Nomoto 1977). One possible explanation is that higher order 
effects may stabilize the system at a comparatively low wave amplitude level. It might, 
therefore, be of some interest to look for experimentally accessible fluid systems which 
should, in theory, exhibit explosive instability. 

The nonlinear coupling coefficients appropriate to the three layer system which we 
have described above have, recently, been calculated by A. D. D. Craik & J. Adam 
(private communication). Their results have verified the predictions on the symmetry 
of the coupling coefficients and of the existence of the explosive instability as des- 
cribed above. 

7. Conclusion 
We have shown that the energy of waves on inviscid, incompressible parallel flows 

with step-function velocity and density profiles may be obtained easily from a 
standard linear analysis of the problem, the formula being analogous to  that which 
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is well known and has proved to be useful in plasma physics. A number of simple 
systems have been analysed in order to verify this formula and to show that identifica- 
tion of negative energy waves may be useful in investigating both the linear and 
nonlinear behaviour of the system. 

In  particular, three types of problem in which this identification is useful were 
illustrated. First the effect of a weak dissipative process on a wave which is neutrally 
stable according to inviscid theory was considered, and it was shown that this could 
be predicted, qualitatively, from a knowledge of the sign of the wave energy. Then it 
was demonstrated that instability of a complex system could, in some cases, be 
predicted by looking at the properties of waves on simpler component systems and 
seeking points on the dispersion diagram a t  which positive and negative energy modes 
intersect. Finally, the possibility of nonlinear instability was discussed, and it was 
pointed out that such instability can occur if a certain type of resonant triad, con- 
taining both positive and negative energy modes, exists. 

The author is grateful to Dr A. D. D. Craik for a number of very valuable discussions 
and for drawing attention to relevant papers in the literature of fluid dynamics. A 
number of useful comments were also made by referees of an earlier draft of this 
paper and by Dr M. E. McIntyre. Finally, the author wishes to thank Dr J. Adam 
and Dr Craik for making the details of their calculations on the nonlinear instability 
available to him. 
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